PUMA
Istituto di Matematica Applicata e Tecnologie Informatiche     
Brezzi F., Fortin M. A minimal stabilisation procedure for mixed finite element methods. Preprint ercim.cnr.ian//2000-1183, 2000.
 
 
Abstract
(English)
Stabilisation methods are often used to circumvent the difficulties associated with the stability of mixed finite element methods. Stabilisation however also means an excessive amount of dissipation or the loss of nice conservation properties. It would thus be desirable to reduce these disadvantages to a minimum. We present a general framework, not restricted to mixed methods, that permits to introduce a minimal stabilising term and hence a minimal perturbation with respect to the original problem. To do so, we rely on the fact that some part of the problem is stable and should not be modified. Sections 2 and 3 present the method in an abstract framework. Section 4 and 5 present two classes of stabilisations for the inf-sup condition in mixed problems. We present many examples, most arising from the discretisation of flow problems. Section 6 presents examples in which the stabilising terms is introduced to cure coercivity problems.
Subject Mixed finite element methods, Stabilisation.
65-XX, 65Nxx


Icona documento 1) Download Document PS


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional